Pages

Sabtu, 06 November 2010

Soal latihan Termokimia ( English Version)

Essay
1. A calorimeter has a heat capacity of 2.05 kJ/°C. How much heat is released if the temperature change in the calorimeter is 11.6°C?

2. 5 g of copper was heated from 20°C to 80°C. How much energy was used to heat the Cu?


3. 3.00 g of octane was burned in a calorimeter with excess oxygen, the 1000 mL of water in the calorimeter rose from 23.0°C to 57.6°C. Write the thermochemicalequation for octane, representing the molar heat of combustion.

4. 130 grams acetylene (C2H2) can raise 20 liters of water from 200C to 1000C. Calculate enthalpy change of water and state its thermochemical equation if known density of water = 1 gr/ml and heat capacity of water = 1 J/gr.0C.


5. Known the enthalpy change of ethylene and ethane formations in the manner are 51,8 kJ and 64,4 kJ, what heat will be released by ethylene produces ethane?

6. Calculate the standard enthalpy change for magnesium in the solid phase reacts with fluorine in the gas phase to create magnesium fluoride in the solid phase, assuming that 1.00 gram of magnesium gives off 46.22 kJ of heat when it reacts with excess fluorine.


7. Use the standard enthalpies of formation in your text book to determine whether heat is given off or absorbed when limestone (calcium carbonate) is converted to lime (calcium oxide) and carbon dioxide. Write the heat value included.

8. How much heat is given off when 1 mole of nitrogen reacts with 2 moles of oxygen to give 2 moles of nitrogen oxide gas, if for the given balanced reaction is 33.2 kJ/mole of nitrogen oxide?

Multiple Choices
1. A coffee cup calorimeter initially contains 125 g of water, at a temperature of 24.2oC. Ammonium nitrate (NH4NO3, 7.07 g), also at 24.2oC, is added to the water, and the final temperature is 18.3oC. What is the heat of solution of ammonium nitrate in kJ/mol? The specific heat capacity of the solution is 4.18 J/oC g. (Ar N = 14, O = 16, H = 1).
a. 39.5 b. 37.3 c. 34.9 d. 32.2 e. 30.1
2. A 0.0500 L sample of 0.500 M barium nitrate is added to 0.0500 L of 0.500 M magnesium sulfate in a calorimeter whose total heat capacity is 455 J/oK. The temperature increase is 1.43oK. Calculate Ho in kJ for the following reaction.
Ba(NO3)2(aq) + MgSO4(aq) –> BaSO4(s) + Mg(NO3)2(aq)
a. -32.0 b. -30.0 c. -28.0 d. -26.0 e. -24.0
3. The combustion of 0.1584 g of benzoic acid increases the temperature of a bomb calorimeter by 2.54oC. The energy released by combustion of benzoic acid is 26.42 kJ/g. A 0.2130 g sample of vanillin (C8H8O3) is then burned in the same calorimeter. The temperature increases by 3.25oC. What is the energy of combustion (kJ/mole) of vanillin?
a. 3.22 x 103 b. 3.08 x 103 c. 2.74 x 103 d. 3.46 x 103 e. 3.82 x 103
4. When 2.62 g of lactic acid, C3H6O3, is burned in a calorimeter whose heat capacity is 21.7 kJ/oK, the temperature increases by 1.800oK. Calculate the heat of combustion of lactic acid in kJ per mole. (Atomic weights: C = 12, H = 1, O = 16).
a. 3.08 x 103 b. 1.68 x 103 c. 1.54 x 103 d. 1.48 x 103 e. 1.22 x 103
5. A 50.0 g piece of copper at 100oC is put into an insulated vessel containing 250 mL of water at OoC. What will be the final temperature (oC) of the water? The specific heat of water and copper are 4.18 J/goC and 0.385 J/goC respectively.
a. 50.0 b. 7.85 c. 5.62 d. 3.25 e. 1.87
6. The specific heat capacity of graphite is 0.71 J/oC g. How much heat energy (kJ) is required to raise the temperature of 850 g of graphite by 150oC?
a. 99 b. 91 c. 86 d. 75 e. 62
7. When 325 J of heat is added to 23.6 g of octane, C8H18, the temperature increases by 6.20oC. Calculate the molar heat capacity of octane (J/moleoC). (Ar C = 12, H = 1).
a. 288 b. 254 c. 235 d. 195 e. 179
8. A 50.0 g piece of copper at 100oC is put into an insulated vessel containing 250 mL of water at OoC. What will be the final temperature (oC) of the water? The specific heat of water and copper are 4.18 J/goC and 0.385 J/goC respectively.
a. 50.0 b. 7.85 c. 5.62 d. 3.25 e. 1.87
9. The specific heat capacity of graphite is 0.71 J/oC g. How much heat energy (kJ) is required to raise the temperature of 850 g of graphite by 150oC?
a. 99 b. 91 c. 86 d. 75 e . 62
10. When 325 J of heat is added to 23.6 g of octane, C8H18, the temperature increases by 6.20oC. Calculate the molar heat capacity of octane (J/moleoC). (Ar C=12, H = 1).
a. 288 b. 254 c. 235 d. 195 e. 179
11. The combustion of B2H6 occurs according to the following equation. Using the enthalpies of formation, calculate the energy (kJ) released when 4.00 g of B2H6 reacts. (Ar B = 10.8, O = 16, H = 1).
B2H6(g) + 3 O2(g) –> B2O3(s) + 3 H2O(g)
Ho B2H6(g) = -57.4 kJ/mole;
Ho B2O3(s) = -1273 kJ/mole;
Ho H2O(g) = -241.8 kJ/mole
a. 1246 b. 1941 c. 522 d. 426 e. 281
12. Oxygen difluoride reacts with water according to the following equation. Using the enthalpies of formation, calculate the energy (kJ) released when 5.00 g of OF2 reacts.(Ar O = 16, F = 19, H = 1).
OF2(g) + H2O(g) –> O2(g) + 2 HF(g)
Ho H2O(g) = -241.8 kJ/mole
Ho HF(g) = -271.1 kJ/mole
Ho OF2(g) = +17.6 kJ/mole
a. 75.6 b. 62.5 c. 51.8 d. 29.4 e. 12.6
13. Nitroglycerin decomposes via the following process. Given the enthalpies of formation, calculate the energy liberated when 10 g of nitroglycerin is detonated. (Ar C = 12, H = 1, N = 14, O = 16).
4 C3H5(NO3)3(l) –> 6 N2(g) + O2(g) + 12 CO2(g) + 5 H2O(g)
Ho C3H5(NO3)3(l) = -364 kJ/mole
Ho CO2(g) = -393.5 kJ/mole
Ho H2O(g) = -241.8 kJ/mole
a. 196 b. 49 c. -3383 d. -4475 e. -4825
14. The fat, glyceryl trioleate, is metabolized via the following reaction. Given the enthalpies of formation, calculate the energy (kJ) liberated when 1.00 g of this fat reacts. (Ar C = 12, H = 1, O = 16).
C57H107O6(s) + 80 O2(g) –> 57 CO2(g) + 52 H2O(l)
Ho C57H107O6 = -70870 kJ/mole
Ho H2O(l) = -285.8 kJ/mole
Ho CO2(g) = -393.5 kJ/mole
a. 42.6 b. 40.4 c. 37.8 d. 33.4 e. 30.2
15. Using the enthalpies of formation, calculate the energy (kJ) released when 3.00 g of NH3 reacts according to the following equation. (Ar B = 10.8, O = 16, H = 1).
4 NH3(g) + 5 O2(g) –> 4 NO(g) + 6 H2O(g)
Ho NH3(g) = -46.1 kJ/mole
Ho NO(g) = +90.2 kJ/mole
Ho H2O(g) = -241.8 kJ/mole
a. 30.8 b. 34.3 c. 37.2 d. 39.9 e. 42.6
16. Calculate the Ho for the following reaction using the given bond energies.
(H – F = 565 kJ; O – O = 494 kJ; H – O = 463, O – F = 184).
F2O(g) + H2O(g) –> O2(g) + 2 HF(g)
a. -390 b. -360 c. -330 d. -260 e. -230
17. The enthalpy change for the following reaction is 368 kJ. Calculate the average O – F bond energy.
OF2(g) –> O(g) + 2 F(g)
a. 184 b. 242 c. 368 d. 536 e. 736
18. Calculate the Ho for the following reaction using the given bond energies.
(C – H = 414 kJ; F – F = 155 kJ; H – F = 431, C – F = 485).
CH4(g) + 4 F2(g) –> CF4(g) + 4 HF(g)
a. -1678 b. -1598 c. -1542 d. -1422 e. -1388
19. Calculate the Ho for the following reaction using the given bond energies.
(H – Cl = 431 kJ; O – O = 494 kJ; H – O = 463, Cl – Cl = 243).
4 HCl(g) + O2(g) –> 2 H2O(g) + 2 Cl2(g)
a. -169 b. -152 c. -139 d. -120 e. -102
20. The standard enthalpy of formation of propane, C3H8, is -103.6 kJ/mole. Calculate the heat of combustion of one mole of C3H8. The heats of formation of CO2(g) and H2O(l) are -394 kJ/mole and -285.8 kJ/mole respectively.
a. 2220 b. 2060.0 c. 1856 d. 1721.2 e. -1939.1
21. The standard enthalpy of formation of methanol, CH3OH, is -238.6 kJ mole. Calculate the heat of combustion of one mole of CH3OH. The heats of formation of CO2(g) and H2O(l) are -394 kJ/mole and -285.8 kJ/mole respectively.
a. 1300 b. 1142 c. 976 d. 854 e. 727
22. The heat of formation of CO2(g) is -394 kJ/mole and that of H2O(l) is -286 kJ/mole. The heat of combustion of C5H12 is -3534 kJ/mole. What is the heat of formation of C5H12?
C5H12(l) + 8 O2(g) –> 5 CO2(g) + 6 H2O(l)
a. -7220 b. -152 c. -108 d. +108 e. +152
23. Using the following information calculate the heat of formation of N2H4.
N2H4(l) + O2(g) –> N2(g) + 2 H2O(l)Ho = -622.4 kJ
Hof H2O(l) = -285.9 kJ/mole
a. +98.6 b. +90.4 c. +70.6 d. +50.6 e. +33.5
24. Using the following information calculate the heat of formation of Fe2O3.
Fe2O3(s) + 3 H2(g) –> 2 Fe(s) + 3 H2O(l) Ho = -35.5 kJ
Hof H2O(l) = -285.9 kJ/mole
a. -893.2 b. -822.2 c. -464.4 d. -393.4 e. -250.4
25. Using the following information calculate the heat of formation of CCl4.
CH4(g) + 4 Cl2(g) –> CCl4(g) + 4 HCl(g) Ho = -402 kJ
Hof CH4(g) = -74.85 kJ/mole; Hof HCl(g) = -92.30 kJ/mole
a. -132 b. -108 c. -54.0 d. +54.0 e. +132
26. The heat of formation of PCl3(g) is -287.0 kJ/mole. What is the heat of reaction for the following process?
2 PCl3(g) –> 2 P(s) + 3 Cl2(g)
a. -612.8 b. -306.4 c. +153.2 d. +306.4 e. + 612.8
27. Given the heat of reaction, Ho = -2029.7 kJ, and the indicated heats of formation, determine the heat of formation of NH4NO3(s) in kJ.
2 Al(s) + 3 NH4NO3(s) –> 3 N2(g) + 6 H2O(g) + Al2O3(s)
Hof H2O(g) = -241.8 kJ; Hof Al2O3(s) = -1675.7 kJ
a. +365.6 b. +298.2 c. -298.2 d. -365.6 e. -442.5
28. The heats of formation of CO2(g) and H2O(l) are -394 kJ/mole and -285.8 kJ/mole respectively. Using the data for the following combustion reaction, calculate the heat of formation of C3H8(g).
C3H8(g) + 5 O2(g) –> 3 CO2(g) + 4 H2O(l) Ho = -2221.6 kJ
a. -143.3 b. -103.6 c. 20.4 d. 185.4 e. 212.2
29. The heats of formation of CO2(g) and H2O(l) are -394 kJ/mole and -285.8 kJ/mole respectively. Using the data for the following combustion reaction, calculate the heat of formation of C3H4(g).
C3H4(g) + 4 O2(g) –> 3 CO2(g) + 2 H2O(l) Ho = -1939.1 kJ
a. -143.3 b. -103.8 c. 20.4 d. 185.4 e. 212.2
30. Calculate the value of Ho/kJ for the following reaction using the listed thermochemical equations: 3 NO2(g) + H2O(l) –> 2 HNO3(l) + NO(g)
NH4NO3(s) –> N2O(g) + 2 H2O(l) Ho/kJ = -125.2 kJ
3 NO(g) –> N2O(g) + NO2(g) Ho/kJ = -155.8 kJ
4 NH3(g) + 5 O2(g) –> 4 NO(g) + 6 H2O(l) Ho/kJ = -1169.2 kJ
NO(g) + 12 O2(g) –> NO2(g) Ho/kJ = -56.6 kJ
a. -124.3 b. -95.6 c. -82.6 d. -71.4 e. -56.2
31. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction: B2H6(g) + 6 Cl2(g) –> 2 BCl3(g) + 6 HCl(g)
BCl3(g) + 3 H2O(l) –> H3BO3(g) + 3 HCl(g) Ho/kJ = -112.5
B2H6(g) + 6 H2O(l) –> 2 H3BO3(s) + 6 H2(g) Ho/kJ = -493.4
1/2 H2(g) + 1/2 Cl2(g) –> HCl(g) Ho/kJ = -92.3
a. +698.2 b. -360.7 c. -545.3 d. -698.2 e. -1376
32. Determine Ho/kJ for the following reaction using the listed enthalpies of reaction: CH4(g) + 1/2 O2(g) –> CO(g) + 2 H2(g)
CH4(g) + 2 O2(g) –> CO2(g) + 2 H2O(l) Ho/kJ = -802 kJ
CH4(g) + CO2(g) –> 2 CO(g) + 2 H2(g) Ho/kJ = +206 kJ
CH4(g) + H2O(g) –> CO(g) + 3 H2(g) Ho/kJ = +247 kJ
a. -25.5 b. -85 c. -92 d. -102 e. -143
33. Calculate the Ho for the following reaction using the listed thermochemical equations: C2H4(g) + H2(g) –> C2H6(g)
C2H4(g) + 3 O2(g) –> 2 CO2(g) + 2 H2O(l) Ho/kJ = -1410.9 kJ
C2H6(g) + 7/2 O2(g) –> 2 CO2(g) + 3 H2O(l) Ho/kJ = -1559.8 kJ
H2(g) + 1/2 O2(g) –> H2O(l) Ho/kJ = -285.8 kJ
a. +178.4 b. +136.9 c. -136.9 d. -178.4 e. -192.4
34. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction: 3 NO2(g) + H2O(l) –> 2 HNO3(l) + NO(g)
NH3(g) + HNO3(l) –> NH4NO3(s) Ho/kJ = -145.7
NH4NO3(s) –> N2O(g) + 2 H2O(l) Ho/kJ = -125.2
3 NO(g) –> N2O(g) + NO2(g) Ho/kJ = -155.8
4 NH3(g) + 5 O2(g) –> 4 NO(g) + 6 H2O(l) Ho/kJ = -1169.2
NO(g) + 1/2 O2(g) –> NO2(g) Ho/kJ = -56.6
a. -1291.6 b. -805.9 c. -685.9 d. -300.1 e. -70.4
35. Determine Ho/kJ for the following reaction using the listed enthalpies of reaction: N2H4(l) + 2 H2O2(g) –> N2(g) + 4 H2O(l)
N2H4(l) + O2(g) –> N2(g) + 2 H2O(l) Ho/kJ = -622.3 kJ
H2(g) + 1/2 O2(g) –> H2O(l) Ho/kJ = -285.8 kJ
H2(g) + O2(g) –> H2O2(l) Ho/kJ = -187.8 kJ
a. -864.3 b. -818.3 c. -745.6 d. -642.2 e. -604.3
36. Calculate the value of Ho/kJ for the following reaction using the listed thermochemical equations: 2 H2O2(l) 2 H2O(l) + O2(g)
2 H2(g) + O2(g) –> 2 H2O(g) Ho/kJ = -483.6 kJ
H2O(l) –> H2O(g) Ho/kJ = +44.0 kJ
H2(g) + O2(g) –> H2O2(l) Ho/kJ = -187.6 kJ
a. -208.4 b. -196.4 c. -188.4 d. -176.5 e. -164.2
37. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction:
4 C(s) + 8 H2(g) + 2 O2(g) –> 3 CH4(g) + CO2(g) + 2 H2O(l)
C(s) + 1/2 O2(g) –> CO(g) Ho/kJ = -110.54
CO(g) + 1/2 O2(g) –> CO2(g) Ho/kJ = -282.97
H2(g) + 1/2 O2(g) –> H2O(l) Ho/kJ = -285.85
C(s) + 2 H2(g) –> CH4(g) Ho/kJ = -74.85
a. +1189.76 b. +181.7 c. -181.7 d. -331.6 e. -1189.76
38. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction: 4 H2O(g) + 3 Fe(s) –> Fe3O4(s) + 4 H2(g)
H2(g) + 1/2 O2(g) –> H2O(g) Ho/kJ = -285.83
FeO(s) + 1/2 O2(g) –> Fe3O4(s) Ho/kJ = -302.4
FeO(s) + H2(g) –> Fe(s) + H2O(g) Ho/kJ = -13.8
a. -602.0 b. -391.7 c. +391.7 d. -24.8 e. +24.8
39. Which of the following equations represents a reaction that provides the heat of formation of hydroxylamine (NH2OH)?
a. NH3(g) + O(g) –> NH2OH(l)
b. ½ N2(g) + 1½ H2(g) + ½ O2(g) –> NH2OH(l)
c. N(g) + 3 H(g) + O(g) –> NH2OH(l)
d. N2(g) + 3 H2O2(l) –> 2 NH2OH(l) + 2 O2(g)
e. NH3(g) + 1/2 O2(g) –> NH2OH(l)
40. Which of the following equations represents a reaction that provides the heat of formation of ethanol (CH3CH2OH)?
a. 2 C(s) + 6 H(g) + O(g) –> CH3CH2OH(l)
b. 2 C(s) + 3 H2(g) + 1/2 O2(g) –> CH3CH2OH(l)
c. CH2 = CH2(g) + H2O(l) –> CH3CH2OH(l)
d. 2 CO(g) + 3 H2(g) –> CH3CH2OH(l) + 1/2 O2(g)
e. 2 CO2(g) + 6 H2(g) –> CH3CH2OH(l) + 3 H2O(l)
41. Which of the following equations represents a reaction that provides the heat of formation of hydrogen peroxide (H2O2)?
a. 2 H2O(l) –> H2O2(l) + H2(g)
b. H2(g) + O2(g) –> H2O2(l)
c. 2 H(g) + 2 O(g) –> H2O2(l)
d. H2O(l) + 12 O2(g) –> H2O2(l)
e. 2 H(g) + O2(g) –> H2O2(l)
42. Which of the following equations represents a reaction that provides the heat of formation of carbon dioxide (CO2)?
a. 2 CO(g) –> CO2(g) + C(s)
b. CO(g) + 1/2 O2(g) –> CO2(g)
c. C(s) + O2(g) –> CO2(g)
d. CO(g) + O(g) –> CO2(g)
e. C(s) + 2 O(g) –> CO2(g)
43. Which of the following equations represents a reaction that provides the heat of formation of hydrogen peroxide (H2O2)?
a. 2 H2O(l) –> H2O2(l) + H2(g)
b. H2(g) + O2(g) –> H2O2(l)
c. 2 H(g) + 2 O(g) –> H2O2(l)
d. H2O(l) + 12 O2(g) –> H2O2(l)
e. 2 H(g) + O2(g) –> H2O2(l)
44. Which of the following equations represents a reaction that provides the heat of formation of ethane (CH3CH3)?
a. CH2=CH2(g) + 2 H2(g) –> CH3CH3(g)
b. 2 CH4(g) –> CH3CH3(g) + H2(g)
c. 2 C(s) + 3 H2(g) –> CH3CH3(g)
d. 2 C(s) + 6 H(g) –> CH3CH3(g)
e. CH-CH(g) + 2 H2O(g) –> CH3CH3(g) + O2(g)
45. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction: N2(g) + O2(g) –> 2 NO(g)
4 NH3(g) + 5 O2(g) –> 6 H2O(l) + 4 NO(g) Ho/kJ = -6134
NH3(g) + 3O2(g) –> 2 N2(g) + 6 H2O(l) Ho/kJ = -790
a. +177 b. +89 c. -89 d. -177 e. -1403
46. Calculate the value of Ho/kJ for the following reaction using the listed thermochemical equations: CuCl2(s) + Cu(s) –> 2 CuCl(s)
Cu(s) + Cl2(g) –> CuCl2(s) Ho/kJ = -206 kJ
2 Cu(s) + Cl2(g) –> 2 CuCl(s) Ho/kJ = -36 kJ
a. -242 b. -170 c. +121 d. +170 e. +242
47. Given the following equations and Ho values, determine the heat of reaction (kJ) at 298 K for the reaction: XeF2(s) + F2(g) –> XeF4(s)
Xe(g) + F2(g) –> XeF2(s) Ho/kJ = -164
Xe(g) + 2 F2(g) –> XeF4(s) Ho/kJ = -262
a. -426 b. -213 c. -98 d. +98 e. +426
48. Calculate the value of Ho/kJ for the following reaction using the listed thermochemical equations: N2(g) + ½ O2(g) –> N2O(g)
2 NH3(g) + 3 N2O(g) –> 4 N2(g) + 3 H2O(l) Ho/kJ = -1010 kJ
4 NH3(g) + 3 O2(g) –> 2 N2(g) + 6 H2O(l) Ho/kJ = -1531 kJ
a. -489 b. -163 c. -81.5 d. +81.5 e. +163
49. Calculate Ho/kJ for the following reaction using the listed standard enthapy of reaction data: (C2H5)2O(l) –> C4H9OH(l)
C4H9OH(l)+6O2(g) –> 4 CO2(g) + 5 H2O(g) Ho/kJ=-2456.1 kJ
(C2H5)2O(l) + 6 O2(g) –> 4 CO2(g) + 5 H2O(g) Ho/kJ = -2510.0 kJ
a. -4966.1 b. -2483.1 c. -53.9 d. +53.9 e. +4966.1
50. Given the following equations and Ho values, determine the heat of reaction at 298 K for the reaction: P4(s) + 10 Cl2(g) –> 4 PCl5(g)
P4(s) + 6 Cl2(g) –> 4 PCl3(l) Ho/kJ = -1150
PCl3(l) + Cl2(g) –> PCl5(g) Ho/kJ = -111
a. +1261 b. +399 c. -399 d. -1261 e. -1594
51. Given the following equations and Ho values, determine the heat of reaction at 298 K for the reaction which occurs in a welder’s acetylene torch:
2 C2H2(g) + 5 O2(g) –> 4 CO2(g) + 2 H2O(l)
H2(g) + 1/2 O2(g) –> H2O(l) Ho/kJ = -285.8
2 C(s) + H2(g) –> C2H2(g) Ho/kJ = +226.7
C(s) + O2(g) –> CO2(g) Ho/kJ = -393.5
a. -285.8 b. -571.6 c. -1574.0 d. -2145.6 e. -2599.0
52.Given the following equations and Ho values, determine the heat of reaction at 298 K for the reaction: C(s) + 2 H2(g) –> CH4(g)
C(s) + O2(g) –> CO2(g) Ho/kJ = -393.5
H2(g) + 1/2 O2(g) –> H2O(l) Ho/kJ = -285.8
CO2(g) + 2 H2O(l) –> CH4(g) + 2 O2(g) Ho/kJ = +890.3
a. +211.0 b. +74.8 c. -74.8 d. -192.2 e. -211.0
53. Calculate Ho/kJ for the following reaction using the listed standard enthapy of reaction data:
2N2(g) + 5 O2(g) –> 2 N2O5(s)
N2(g) + 3 O2(g) + H2(g) –> 2 HNO3(aq) Ho/kJ = -414.0
N2O5(s) + H2O(l) –> 2 HNO3(aq) Ho/kJ = -86.0
2 H2(g) + O2(g) –> 2 H2O(l) Ho/kJ = -571.6
a. -42.2 b. -71.2 c. -84.4 d. -121.8 e. -243.6

Free Template Blogger collection template Hot Deals BERITA_wongANteng SEO theproperty-developer

0 komentar:

Posting Komentar

Masukan Nama Penyanyi - Judul Lagu

Mesin Cari Free Download Mp3 Gratis